Scopus Indexed Paper

Paper Details


Title
Silicon nano crystal filled ellipse core based quasi photonic crystal fiber with birefringence and very high nonlinearity
Abstract
In this paper, we have proposed a new type of quasi photonic crystal fiber (PCF) with a silicon nano crystal core. This structure can be used to sense aqueous analysis over a wavelength range of 1.00 µm to 3.00 µm. The properties of this structure are simulated using the vector-finite element method (VFEM) employing a boundary condition. The proposed model provides a significant effect of birefringence and a very high nonlinear coefficient for two different fundamental modes, which are obtained by adjusting the size of the silicon nano crystal filled ellipse core. This provides a high nonlinearity of 4.2 × 105 W−1Km−1 and a birefringence of ̴ 3.2 × 10−1 at the wavelengths 1.00 µm and 3.00 µm, respectively. Some others properties, such as the effective area, scattering loss, confinement loss, numerical aperture (NA)and power fraction are also analyzed to measure the performance of this structure. The proposed model is useful for sensing and biomedical imaging applications. The proposed structure may also find extensive applications in optical communication and sensor systems.
Keywords
Photonic crystal fiber, Birefringence, Nonlinearity, Numerical aperture, Confinement loss, Power fraction
Authors
Bikash Kumar Paul, Sujan Chakma, Md. Abdul Khalek, Kawsar Ahmed
Phone
Journal or Conference Name
Chinese Journal of Physics
Publish Year
2018
Indexing
Scopus