Heavy-ion-acoustic (HIA) waves in an unmagnetized collisionless plasma system comprising superthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions have been investigated both numerically and analytically. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and Burgers (BG) equations. The parametric regimes for the existence of both the positive and negative solitary and shock waves have been obtained. The effects of adiabaticity of heavy ions and superthermality of electrons, which are found to notably modify the fundamental features (viz. polarity, amplitude, phase speed, etc.) of HIA solitary and shock waves, are precisely studied. The results of our theoretical investigation can be applicable to understand the characteristics and basic nonlinear structures of HIA waves both in space and laboratory plasma situations.