Scopus Indexed Paper

Paper Details

A comparative study on liver disease prediction using supervised machine learning algorithms
Chronic Liver Disease is the leading cause of global death that impacts the massive quantity of humans around the world. Thisdisease is caused by an assortment of elements that harm the liver. For example, obesity, an undiagnosed hepatitis infection, alcohol misuse. Which is responsible for abnormal nerve function, coughing up or vomiting blood, kidney failure, liver failure, jaundice, liver encephalopathy andthere are many more. This disease diagnosis is very costly and complicated. Therefore, the goal of this work is to evaluate the performance of different Machine Learning algorithms in order to reduce the high cost of chronic liver disease diagnosis by prediction. In this work, we used six algorithms Logistic Regression, K Nearest Neighbors, Decision Tree, Support Vector Machine, Naïve Bayes, and Random Forest. The performance of different classification techniques was evaluated on different measurement techniques such as accuracy, precision, recall, f-1 score, and specificity. We found the accuracy 75%, 74%, 69%, 64%, 62% and 53% for LR, RF, DT, SVM, KNN and NB. The analysis result shown the LR achieved the highest accuracy. Moreover, our present study mainly focused on the use of clinical data for liver disease prediction and explore different ways of representing such data through our analysis
Machine Learning, Liver Disease, Classification, Supervised learning, Computational Intelligence, Regression, Random Forest,Decision Tree, Support Vector Machine, K-Nearest Neighbors, Naïve Bayes.
A.K.M Sazzadur Rahman, F.M. Javed Mehedi Shamrat, Zarrin Tasnim, Joy Roy, Syed Akhter Hossain
Journal or Conference Name
International Journal of Scientific and Technology Research
Publish Year