The transition from traditional to online education is challenging and has many obstacles in various situations. Due to the Covid-19 situation, we use digital blended education from the traditional system. However, in some cases, it can harm our student’s academic performance. In this research, we aim to identify the factors that impact the student’s academic performance in online education. On the other hand, this study also finds the student Cumulative Grade Point Average (CGPA) fluctuation using machine learning classifiers. To achieve this, we survey to gather data perspective of Bangladesh private university, and this data allows us to analyze and classify using machine learning techniques such as Logistic Regression (LR), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision Tree (DT), and Random Forest (RF). This study finds Random Forest (RF) outperforms the other state-of-art classifiers.