Human voice is an important concern of efficient and modern communication in the era of Alexa, Siri, or Google Assistance. Working with voice or speech is going to be easy by preprocessing the unwanted entities when real speech data contains a lot of noise or continuous delivery of a speech. Working with Bangla language is also a concern of enriching the scope of efficient communication over Bangla language. This paper presented a method to reduce noise from speech data collected from a random noisy place, and segmentation of word from continuous Bangla voice. By filtering the threshold of noise with fast Fourier transform (FFT) of audio frequency signal for reduction of noise and compared each chunk of audio signal with minimum dBFS value to separate silent period and non-silent period and on each silent period, segment the signal for word segmentation.