"Energy consumption is rising dramatically at the price of depleting fossil fuel supplies
and rising greenhouse gas emissions. To resolve this crisis, barley waste, which is hazardous for the
environment and landfill, was studied through thermochemical characterization and pyrolysis to
use it as a feedstock as a source of renewable energy. According to proximate analysis, the concentrations of ash, volatile matter, fixed carbon, and moisture were 5.43%, 73.41%, 18.15%, and 3.01%,
consecutively. The ultimate analysis revealed that the composition included an acceptable H/C,
O/C, and (N+O)/C atomic ratio, with the carbon, hydrogen, nitrogen, sulfur, and oxygen amounts
being 46.04%, 6.84%, 3.895%, and 0.91%, respectively. The higher and lower heating values of 20.06
MJ/kg and 18.44 MJ/kg correspondingly demonstrate the appropriateness and promise for the generation of biofuel effectively. The results of the morphological study of biomass are promising for
renewable energy sources. Using Fourier transform infrared spectroscopy, the main link between
carbon, hydrogen, and oxygen was discovered, which is also important for bioenergy production.
The maximum degradation rate was found by thermogravimetric analysis and derivative thermogravimetry to be 4.27% per minute for pyrolysis conditions at a temperature of 366 °C and 5.41%
per minute for combustion conditions at a temperature of 298 °C. The maximum yields of biochar
(38.57%), bio-oil (36.79%), and syngas (40.14%) in the pyrolysis procedure were obtained at 400, 500,
and 600 °C, respectively. With the basic characterization and pyrolysis yields of the raw materials,
it can be concluded that barley waste can be a valuable source of renewable energy. Further analysis
of the pyrolyzed products is recommended to apply in the specific energy fields."