Scopus Indexed Publications

Paper Details


Title
Deep Learning Predictive Model for Colon Cancer Patient using CNN-based Classification
Author
Zarrin Tasnim, F.M. Javed Mehedi Shamrat, Md. Masum Billah, Sovon Chakraborty,
Email
tasnim35-1234@diu.edu.bd
Abstract

In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new diagnostic techniques were developed. Cancer is the world's second-largest cause of mortality, claiming the lives of one out of every six individuals. The colon cancer variation is the most frequent and lethal of the numerous kinds of cancer. Identifying the illness at an early stage, on the other hand, substantially increases the odds of survival. A cancer diagnosis may be automated by using the power of Artificial Intelligence (AI), allowing us to evaluate more cases in less time and at a lower cost. In this research, CNN models are employed to analyse imaging data of colon cells. For colon cell image classification, CNN with max pooling and average pooling layers and MobileNetV2 models are utilized. To determine the learning rate, the models are trained and evaluated at various Epochs. It's found that the accuracy of the max pooling and average pooling layers is 97.49% and 95.48%, respectively. And MobileNetV2 outperforms the other two models with the most remarkable accuracy of 99.67% with a data loss rate of 1.24.


Keywords
Colon cancer; MobileNetV2; Max pooling; Average pooling; data loss; accuracy
Journal or Conference Name
International Journal of Advanced Computer Science and Applications
Publication Year
2021
Indexing
scopus