The consistency of user satisfaction on mobile application has been more competitive because of the rapid growth of multi-featured applications. The analysis of user reviews or opinions can play a major role to understand the user’s emotions or demands. Several approaches in different areas of sentiment analysis have been proposed recently. The main objective of this work is to assist the developers in identifying the user’s opinion on their apps whether positive or negative. A sentiment analysis based approach has been proposed in this paper. NLP-based techniques Bags-of-Words, N-Gram, and TF-IDF along with Machine Learning Classifiers, namely, KNN, Random Forest (RF), SVM, Decision Tree, Naive Byes have been used to determine and generate a well-fitted model. It’s been found that RF provides 87.1% accuracy, 91.4% precision, 81.8% recall, 86.3% F1-Score. 88.9% of accuracy, 90.8% of precision, 86.4% of recall, and 88.5% of F1-Score are obtained from SVM.