Scopus Indexed Publications

Paper Details


Title
Synthesis of biodiesel from Carthamus tinctorius L. oil using TiO2 nanoparticles as a catalyst
Author
, Talha Bin Emran,
Email
Abstract

Objectives

The present study aimed to synthesize Titanium dioxide (TiO2) nanoparticles and assess its catalytic role in the synthesis of biodiesel from Carthamus tinctorius L. (a non-edible plant source).

Methods

The precipitation approach was used to synthesize TiO2 nanoparticles, and the process was verified using X-ray diffraction (XRD) and scanning electron microscope (SEM). The synthesized biodiesel was analyzed qualitatively through NMR, GC-MS, and FT-IR spectroscopy.

Result

XRD result showed that the crystal structure of TiO2 nanoparticles was a biphasic mixture of rutile and anatase phases. SEM analysis revealed that the synthesized TiO2 nanoparticles had size from 42 nm to 58 nm and a surface area of 21–27 m2/g. The oil content in the feedstock was 43.9 % with free fatty acids contents of 0.37 mg KOH/g. The suitable condition for optimum yield (95 %) of biodiesel was 1:10 of oil to methanol using 25 g of catalyst at a temperature of 65 °C for 80–120 min of reaction time. Results obtained through 1H NMR for methoxy proton at 3.661 ppm, an alpha-methylene proton in triplet from 2.015 to 2.788 ppm, terminal methyl protons at 0.885 to 0.910 ppm, and beta-carbonyl methylene protons from 1.253 to 1.641 ppm confirmed the synthesis of biodiesel. Similarly, the peaks obtained through FT-IR spectroscopy for methoxycarbonyl at 1740.6 cm−1 and ether at 1012.6 cm−1 are the evidence for the validation of transesterification reaction. Furthermore, GC-MS analysis showed peaks for 17 different types of fatty acid methyl esters.

Conclusion

The chemical and physical properties of C. tinctorius showed that the oil of C. tinctorius could be a potential non-edible feedstock for the biodiesel industries.

Keywords
Green energy Biodiesel TiO2 Non-edible feedstock Carthamus tinctorius L.
Journal or Conference Name
Journal of King Saud University - Science
Publication Year
2022
Indexing
scopus