Scopus Indexed Publications

Paper Details


Title
Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging
Author
Md. Monirul Islam,
Email
monirul.swe@diu.edu.bd
Abstract

    Deep learning methods in artificial intelligence are used for brain tumor diagnosis as they handle a huge amount of data. Compared to computerized tomography (CT), Ultrasound, and X-ray imaging, Magnetic Resonance Imaging (MRI) is effectively used for machine vision-based brain tumor diagnosis. However, due to the complex nature of the brain, brain tumor diagnosis is always challenging. This research aims to study the effectiveness of deep transfer learning architectures in brain tumor diagnosis. This paper applies four transfer learning architectures- InceptionV3, VGG19, DenseNet121, and MobileNet. We used a dataset with data from three benchmark databases of figshare, SARTAJ, and Br35H to validate the models. These databases have four classes: pituitary, no tumor, meningioma, and glioma. Image augmentation is applied to make the classes balanced. Experimental results demonstrate that the MobileNet outperforms competing methods by exhibiting an accuracy of 99.60%.

    Keywords
    Transfer learning, Deep learning, Artificial intelligence, Brain tumor, Magnetic resonance imaging. Computerized tomography
    Journal or Conference Name
    Healthcare Analytics
    Publication Year
    2023
    Indexing
    scopus