Scopus Indexed Publications

Paper Details


Title
Healthcare As a Service (HAAS): CNN-based cloud computing model for ubiquitous access to lung cancer diagnosis
Author
Nuruzzaman Faruqui,
Email
faruqui.swe@diu.edu.bd
Abstract

The field of automated lung cancer diagnosis using Computed Tomography (CT) scans has been significantly advanced by the precise predictions offered by Convolutional Neural Network (CNN)-based classifiers. Critical areas of study include improving image quality, optimizing learning algorithms, and enhancing diagnostic accuracy. To facilitate a seamless transition from research laboratories to real-world applications, it is crucial to improve the technology's usability—a factor often neglected in current state-of-the-art research. Yet, current state-of-the-art research in this field frequently overlooks the need for expediting this process. This paper introduces Healthcare-As-A-Service (HAAS), an innovative concept inspired by Software-As-A-Service (SAAS) within the cloud computing paradigm. As a comprehensive lung cancer diagnosis service system, HAAS has the potential to reduce lung cancer mortality rates by providing early diagnosis opportunities to everyone. We present HAASNet, a cloud-compatible CNN that boasts an accuracy rate of 96.07%. By integrating HAASNet predictions with physio-symptomatic data from the Internet of Medical Things (IoMT), the proposed HAAS model generates accurate and reliable lung cancer diagnosis reports. Leveraging IoMT and cloud technology, the proposed service is globally accessible via the Internet, transcending geographic boundaries. This groundbreaking lung cancer diagnosis service achieves average precision, recall, and F1-scores of 96.47%, 95.39%, and 94.81%, respectively.

Keywords
Journal or Conference Name
Heliyon
Publication Year
2023
Indexing
scopus