Scopus Indexed Publications

Paper Details


Title
Enhancing Predictive Models for Assessing 5G Exposure Effects on Human Health and Cognition through Supervised Machine Learning: A Multi-Stage Feature Selection Approach [(Udoskonalanie modeli predykcyjnych do oceny wpływu narażenia na sieć 5G na zdrowie ludzkie i funkcje poznawcze poprzez nadzorowane uczenie maszynowe: wieloetapowe podejście do wyboru funkcji)]
Author
, Hasliza A Rahim,
Email
Abstract

No prior reviews have focused on any comprehensively examine the effects of 5G exposure (700 MHz to 30 GHz) on human health and cognition using supervised Machine Learning (ML). This novel research combined the Multi-Stage Feature Selection (MSFS) and hybrid features for classification machine learning model. The approach which includes the use of MSFS, yielded better results in terms of accuracy, precision, F1- score, sensitivity, and specificity when contrasted with the approach that did not incorporate MSFS with accuracy more than 0.95 for both datasets. 

Keywords
Journal or Conference Name
Przeglad Elektrotechniczny
Publication Year
2024
Indexing
scopus