Scopus Indexed Publications

Paper Details


Title
A human-in-the-loop ensemble fusion framework for road crash prediction: coping with imbalanced heterogeneous data from the driver-vehicle-environment system
Author
, Zouhair Elamrani Abou Elassad,
Email
Abstract

Road accidents are an inevitable aspect of daily life, and predicting crashes is crucial for minimizing disruptions and advancing intelligent transportation technologies. This study aims to design an ensemble fusion decision system using various base classifiers and a meta-classifier to improve crash prediction efficiency within the driver-vehicle-environment system. We adopted a data-driven strategy to analyze four categories of features—driver demographics, vehicle telemetry, driver inputs, and environmental conditions—collected from a driving simulator. Optimized modeling strategies using AdaBoost, XGBoost, GBM, LightGBM, and CatBoost were implemented. Moreover, statistical logit models were also used to assess the likelihood of crashes and the correlations among key variables. Furthermore, three resampling strategies, SMOTE-TL, SMOTE-ENN, and ADASYN, were employed to address class imbalance. The best performance was achieved with GBM, XGBoost, and AdaBoost as base classifiers, SMOTE-TL for balancing, and CatBoost as the meta-classifier, with 89.78% precision, 95.69% recall, and 92.64% F1-score.

Keywords
machine learningdata heterogeneityfusion frameworkbalancing techniques
Journal or Conference Name
Transportation Letters
Publication Year
2024
Indexing
scopus