We are developing high spatial resolution radiation-sensitive passive and active insulator sensors, the responses respectively reflecting molecular configuration absorptivity and disruptions, and electron trapping, with readout dependent upon evoked light. Present interest in radiation medicine links with an over-arching aim of providing for the capture of detailed dose data, accessing systems possessing the ability to reflect patient-to-patient variations. In turn, enriched data can link to AI-assisted individualized procedures offering the potential of improvements in therapeutic outcomes. The work builds on prior investigation of the thermoluminescence of 50 μm graphite foils and Raman analysis of 75 μm PTFE tape, the latter medium being the focus of current interest. For PTFE the intention herein is to investigate systems of readout that offer an alternative to Raman spectroscopy, investigating photoluminescence- and Fourier Transform Infrared spectroscopy. In use of photoluminescence spectroscopy linear dose sensitivity from a few mGy to in excess of several Gy is found, the lower end being important in encompassing typical penumbral doses and scatter. Additionally, the flexible PTFE tape provides for a comprehensive range of body curvatures. Moreover, unprecedented micron level 2D spatial resolution is obtained from use of laser readout. The tape offers particular advantages, allowing safe and accurate dose assessments in otherwise hard to deal-with situations, including for eyes and skin.