Scopus Indexed Publications

Paper Details


Title
Comparative Analysis of Different Sliding Mode Control Approaches for Load Frequency Control in Edge of the Grid System

Author
Pritom Aich,

Email

Abstract

The integration of renewable energy sources (RESs) at the edge of the grid plays a contributory role in advancing the transition to a sustainable energy future. However, this transition introduces significant variability, which challenges the maintenance of frequency stability in power systems. To address the impacts of RES variability, various robust control strategies have been developed. This paper compares the performance of different advanced sliding mode control (SMC) approaches, i.e., super twisting (ST) algorithm‐based second order sliding mode control (STSOSMC), second order sliding mode control (SOSMC), double integral sliding mode control (DISMC) and integral sliding mode control (ISMC) with conventional sliding mode control (SMC) for load frequency control with stochastic RESs such as biogas generators (BG) and wind‐based doubly fed induction generators (DFIG). The impact of the advanced sliding mode controllers on the voltage and rotor angle stability of the system is also explored.  The efficacy of the controllers is tested under different load disturbances, considering nonlinearities such as communication delay (CD), sensor inaccuracy (SI), governor dead band (GDB), and generation rate constraint (GRC). The results demonstrate that STSOSMC achieves superior frequency regulation with minimal chattering and outperforms other controllers in terms of settling time, overshooting, and undershooting in frequency deviation. The result also demonstrates the effectiveness of STSOSMC in managing the variability and disturbances of RESs. Therefore, it could be considered the most robust control mechanism from the edge of the grid system with high penetration of RESs


Keywords

Journal or Conference Name
IET Generation, Transmission and Distribution

Publication Year
2025

Indexing
scopus