Scopus Indexed Publications

Paper Details


Title
Natural compounds and programmed necrosis: pioneering a new frontier in cancer treatments

Author
Md Al Amin, Talha Bin Emran,

Email

Abstract

Programmed necrosis, a controlled cell death method that bypasses resistance mechanisms that render apoptosis ineffective, is a potential cancer treatment target. Due to their diverse biological activities and low side effects, natural products are being explored as modulators of programmed necrosis pathways. This review highlights the potential of natural compounds to target cancer cells while preserving healthy tissues and their interaction with essential programmed necrosis mechanisms like ferroptosis and necroptosis. Recent developments have identified various types of programmable necrosis, including necroptosis, ferroptosis, pyroptosis, proptosis, mitochondrial permeability transition-driven necrosis, and oncosis. Natural compounds are increasingly being utilized as a primary source of anti-cancer medications, providing new cancer treatments. This review demonstrates the molecular mechanisms behind lipid peroxidation, mixed lineage kinase domain-like protein, and receptor-interacting protein kinases (RIPK1 and RIPK3) inducing cell death. Recent research has identified natural compounds like polyphenols, alkaloids, and terpenoids that can modulate pathways and benefit preclinical cancer models. The review underscores the potential of natural compounds in developing innovative cancer treatments by integrating pharmacology and cellular signaling knowledge. Integrating natural compound studies and programmed necrosis research presents a promising avenue for oncologists to overcome treatment resistance. Natural compounds have shown potential in developing programmed necrosis as a novel cancer treatment approach, enhancing therapeutic effectiveness and minimizing side effects through preclinical research, pharmacology, and molecular biology.


Keywords

Journal or Conference Name
Naunyn-Schmiedeberg's Archives of Pharmacology

Publication Year
2025

Indexing
scopus