Environmental radioactivity is significantly elevated by coal combustion, posing risks to communities living near coal-fired thermal power plants (CFTPPs). This study presents the first comprehensive assessment of radiological impacts around the Rampal Thermal Power Plant, a 1320 MW facility located in Rampal Upazila, near the UNESCO World Heritage site of Sundarbans, Bangladesh. Thirty soil samples were systematically collected from distances of 100, 500, 1000, 2000, and 3000 m from the power plant. The activity concentrations of 226Ra, 232Th, and 40K in soil ranged from 17–31, 29–51, and 350–670 Bq kg–1, respectively, with a few samples exceeding the population-weighted global averages for 226Ra (32 Bq kg–1) and 232Th (45 Bq kg–1), and almost all the samples exceeding the average for 40K (420 Bq kg–1). The elevated levels of 226Ra, 232Th, and 40K in the soil samples can be attributed to several interconnected factors, including the presence of thorium-rich minerals such as monazite and zircon, granitic geological formations, and anthropogenic inputs like bottom ash discharge from the plant and coal combustion byproducts. While the radium equivalent activity and hazard indices generally fell within safety limits, the higher outdoor and indoor absorbed dose rates, effective doses, and increased lifetime cancer risk raised alarms about potential health threats for nearby residents over time. Moreover, the long-term radiological effects on the Sundarbans ecosystem could disturb its fragile balance, impacting both biodiversity and the local communities that rely on its resources. These results highlight the necessity for further evaluations and remediation efforts to ensure the safe use of these soils in agricultural and construction activities. This research also seeks to develop a radiological distribution map, which will provide crucial baseline data for the forthcoming Rooppur Nuclear Power Plant.