Driver fatigue is a major contributor to traffic accidents, leading to increased fatality rates and severe damage compared to incidents involving alert drivers. Electroencephalography (EEG) has emerged as a widely used method for detecting driver fatigue due to its ability to capture brain activity patterns. This survey provides a thorough analysis of devices that detect driver fatigue using EEG, analyzing existing methodologies, challenges, and future research directions. This study was carried out according to PRISMA criteria. Relevant studies were retrieved from SpringerLink, Web of Science, IEEE Xplore, Scopus, and ScienceDirect, covering research published until February 16, 2025. After 267 publications were identified, 87 scientific papers were fully analyzed based on their relevance and contribution to the identification of driver fatigue using EEG. The review explores the article selection process, followed by an in-depth discussion of driver fatigue detection systems across various domains. Applications of Machine Learning (ML) in EEG-based fatigue evaluation are carefully reviewed, covering data collection, preliminary processing, feature extraction, categorization techniques, and performance assessment. Additionally, a comparative evaluation of cutting-edge research provides a comprehensive visualization of current research trends. This survey highlights the advantages, limitations, and future prospects of EEG-based driver fatigue detection, offering valuable insights for improving road safety. The findings contribute to the development of more reliable and real-time fatigue detection systems by addressing existing challenges and recommending potential solutions.