Scopus Indexed Publications

Paper Details


Title
24Factorial Design Formulation Optimization and In vitro Characterization of Desloratadine Nanosuspension Prepared Using Antisolvent Precipitation

Author
, Mohammad Amjad Kamal,

Email

Abstract

Introduction: Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties.

Method: This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies.

Result: The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR).

Conclusion: The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.

Keywords: Nanosuspension; cryoprotectant; delivery; desloratadine; drug dissolution; factorial design


Keywords

Journal or Conference Name
Current Drug Delivery

Publication Year
2025

Indexing
scopus