Emerging evidence indicates IBD is a risk factor for the increasing incidence of colorectal cancer (CRC) development. We used a system biology approach to identify common molecular signatures and pathways that interact between IBD and CRC and the indispensable pathological mechanisms. First, we identified 177 common differentially expressed genes (DEGs) between IBD and CRC. Gene set enrichment, protein-protein, DEGs-transcription factors, DEGs-microRNAs, protein-drug interaction, gene-disease association, Gene Ontology, pathway enrichment analyses were conducted to these common genes. The inclusion of common DEGs with bimolecular networks disclosed hub proteins (LYN, PLCB1, NPSR1, WNT5A, CDC25B, CD44, RIPK2, ASAP1), transcription factors (SCD, SLC7A5, IKZF3, SLC16A1, SLC7A11) and miRNAs (mir-335-5p, mir-26b-5p, mir-124-3p, mir-16-5p, mir-192-5p, mir-548c-3p, mir-29b-3p, mir-155-5p, mir-21–5p, mir-15a-5p). Analysis of the interaction between protein and drug discovered ASAP1 interacts with cysteine sulfonic acid and double oxidized cysteine drug compounds. Gene-disease association analysis retrieved ASAP1 also associated with pulmonary and bladder neoplasm diseases.